Somatic evolutionary genomics: Mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration

نویسنده

  • Steven A. Frank
چکیده

Somatic mutations must happen often during development because of the large number of cell divisions to expand from a single-cell zygote to a full organism. A mutation in development carries forward to all descendant cells, causing genetic mosaicism. Widespread genetic mosaicism may influence diseases that derive from a few genetically altered cells, such as cancer. I show how to predict the expected amount of mosaicism and the variation in mosaicism between individuals. I then calculate the predicted risk of cancer derived from developmental mutations. The calculations show that a significant fraction of cancer in later life likely arises from developmental mutations in early life. In addition, much of the variation in the risk of cancer between individuals may arise from variation in the degree of genetic mosaicism set in early life. I also suggest that certain types of neurodegeneration, such as amyotrophic lateral sclerosis (ALS), may derive from a small focus of genetically altered cells. If so, then the risk of ALS would be influenced by developmental mutations and the consequent variation in genetic mosaicism. New technologies promise the ability to measure genetic mosaicism by sampling a large number of cellular genomes within an individual. The sampling of many genomes within an individual will eventually allow one to reconstruct the cell lineage history of genetic change in a single body. Somatic evolutionary genomics will follow from this technology, providing new insight into the origin and progression of disease with increasing age.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution in health and medicine Sackler colloquium: Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration.

Somatic mutations must happen often during development because of the large number of cell divisions to expand from a single-cell zygote to a full organism. A mutation in development carries forward to all descendant cells, causing genetic mosaicism. Widespread genetic mosaicism may influence diseases that derive from a few genetically altered cells, such as cancer. I show how to predict the ex...

متن کامل

Somatic Mosaicism and Disease

The large number of cell divisions required to make a human body inevitably leads to the accumulation of somatic mutations. Such mutations cause individuals to be somatic mosaics. Recent advances in genomic technology now allow measurement of somatic diversity. Initial studies confirmed the expected high levels of somatic mutations within individuals. Going forward, the big questions concern th...

متن کامل

Aging and the rise of somatic cancer-associated mutations in normal tissues

DNA mutations are inevitable. Despite proficient DNA repair mechanisms, somatic cells accumulate mutations during development and aging, generating cells with different genotypes within the same individual, a phenomenon known as somatic mosaicism. While the existence of somatic mosaicism has long been recognized, in the last five years, advances in sequencing have provided unprecedented resolut...

متن کامل

Hypothesis: Somatic Mosaicism and Parkinson Disease

Mutations causing genetic disorders can occur during mitotic cell division after fertilization, which is called somatic mutations. This leads to somatic mosaicism, where two or more genetically distinct cells are present in one individual. Somatic mutations are the most well studied in cancer where it plays an important role and also have been associated with some neurodegenerative disorders. T...

متن کامل

Somatic mosaicism and cancer: inference based on a conditional Luria-Delbrück distribution.

Somatic mosaicism for mutations in disease-causing genes has been reported in several recent studies. Examples include hemophilia A, many skin disorders, and several cancers such as retinoblastoma and familial adenomatous polyposis. Many of these disorders require multiple mutations in order to express the disease phenotype. For example, two recessive mutations to the retinoblastoma locus are r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009